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When a brittle material is loaded to the limit of its strength, it fails by nucleation and propa-

gation of a crack1. The conditions for crack propagation are created by stress concentration

in the region of the crack tip and depend on macroscopic parameters such as the geome-

try and dimensions of the specimen2. The way the crack propagates, however, is entirely
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determined by atomic–scale phenomena, since brittle crack tips are atomically sharp and

propagate by breaking the variously oriented interatomic bonds, one at a time, at each point

of the moving crack front1, 3. The physical interplay of multiple length scales makes brit-

tle fracture a complex “multi–scale” phenomenon, indeed several intermediate scales may

arise in more complex situations (e.g. microdefects, grain boundaries). The occurrence of

various instabilities in crack propagation at very high speeds is well known1 and significant

advances have been made recently in understanding their origin4, 5. Here, we investigate

low speed propagation instabilities in silicon using quantum–mechanical hybrid multi–scale

modelling and single–crystal fracture experiments. Our simulations predict a crack tip re-

construction that makes low–speed crack propagation unstable on the (111) cleavage plane,

conventionally thought of as the most stable cleavage plane. We carry out experiments in

which this instability is observed for the first time at a range of low speeds, using a novel

experimental technique designed for the investigation of fracture under low tensile loads.

Further simulations explain why, conversely, at moderately high speeds crack propagation

on the (110) cleavage plane becomes unstable and deflects onto (111) planes, as previously

observed experimentally.6, 7

Until relatively recently, the process of brittle fracture has been primarily analysed by con-

tinuum mechanics techniques, which predict the driving force for crack propagation—the release

of elastic energy per unit advancement as the crack progresses—to be a function of the applied

load, the length of the crack, and a geometry dependent factor1, 2, 8–10. The crack is assumed to

propagate as long as its energy release rate G is equal to or larger than a material and orientation
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dependent critical value. Griffith, who first carried out this analysis, equated the critical energy

release rate below which crack propagation cannot take place with the energy 2γ needed to create

the new crack surfaces8. This approach provides a good description of the fracture process for a

straight crack in both static8 and dynamic regimes10, as shown by recent experiments on carefully

prepared silicon single crystals7, 11–14.

More delicate issues such as the origin of crack path instabilities and materials’ resistance

to fracture are, however, poorly understood. Even very simple atomistic models show that the

discrete nature of the material will manifest itself in a higher resistance to fracture than predicted

by Griffith’s criterion, due to lattice (or bond) trapping4, 15, 16. This effect depends on the detailed

nature of the atomic interactions in the specific material4, 17 and may be very different for different

cleavage planes. For a given cleavage plane, it can lead to slow crack growth1, 4, 18 and anisotropy

with respect to propagation along different crystallographic directions19, 20 or even the sign of the

propagation direction21.

Our simulations use the “Learn–on–the–fly” (LOTF) hybrid classical/quantum–mechanical

(QM) molecular dynamics method, which achieves a nearly seamless coupling of the mobile QM

and classical regions22. We use the QM chemical bonding description where it is necessary near

the crack tip but not in the rest of the loaded sample where it is unnecessary and would be pro-

hibitively expensive computationally. We first considered a (111) crack plane with the crack front

aligned with the [11̄0] direction which is under uniaxial [111] tensile load (Fig. 1). Our simulations

indicate that the K–field displacement predicted by continuum theory is never stable. Below a load
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of G = 2.1 Jm−2, much lower than the Griffith critical load (G = 3.1 Jm−2, using a value for

the surface energy computed with our QM model), the crack closes up. Above this load, a crack

tip reconstruction forms spontaneously via a bond rotation (Fig. 1c), resulting in the formation

of 5– and 7–membered rings (see Supplementary Information). This relieves the stress along the

main load axis in the immediate tip region, thus inducing additional lattice trapping. The recon-

structed geometry of the crack tip is structurally similar to the Pandey reconstruction of the (111)

surface23. As such, it could be viewed as the core of a dislocation which remains trapped at the

crack tip, unable to induce large scale plasticity at temperatures much lower than the brittle to duc-

tile transition. In simulations performed above the critical load for propagation, the slowly moving

(111)[11̄0] crack occasionally visits the reconstructed tip configuration as it propagates. Remark-

ably, for slow enough propagation, the [111] oriented bonds in the 6–membered rings located one

atomic layer below the initial crack plane and further along the propagation direction can break be-

fore the bridging bonds associated with the 7–membered ring. Indeed, these are the bonds where

the stress is mostly concentrated after the reconstruction. Every such reconstruction and bond

breaking event creates a downward [111] step for the system oriented as in Fig. 1c, due to the bro-

ken mirror symmetry of the crystal. This is at variance with the behaviour expected for propagation

at high speeds, larger than those investigated here, where both upwards and downwards steps may

occur24 and macroscopically smooth (111) cleavage surfaces are invariably observed.25 Our sim-

ulations thus predict a systematic deflection of the crack path from the (111) plane at sufficiently

low velocities, while fast cracks are dynamically steered away from the instability. We speculate

that the deflection process may start with a reconstruction event induced by the local slowing down
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of a crack–front segment perhaps due to an encounter with a crystal defect. However started, this

process will initiate a positive feedback “sinking” mechanism, since each reconstruction event will

further trap and slow down the crack, leading to ever more reconstructions, the whole process

yielding observable fracture surface features.

A simple mesoscopic model of the crack tip reconstruction and ensuing feedback process

shows how this perturbation can evolve into the macroscopic feature, shown in Fig. 2d. A crack

front section of length L is modelled by an elastic string26, represented by a set of N beads, each

of mass m, connected by springs. The beads’ positions and velocities are represented by the array

of dynamical variables {ri,vi}, and periodic boundary conditions are imposed in the crack front

y direction. The values of most of the parameters in what follows can be directly derived from

experimental data, as detailed in the Supplementary Information. The equations of motion for the

beads are expressed as a dynamical map27:

ri(t + ∆t) = ri(t) + ∆tvi(t) (1)

vi(t + ∆t) = vi(t) +
∆t

m

[
f 0x̂− bvi(t) + k[ri+1(t) + ri−1(t)− 2ri(t)]

]

−ξi
τ

l
[vx

i (t)]2 + η
L

N

∑

j

max(0, rx
j − rx

i ) (2)

ξi =
s

1 + exp[(vx
i − vx

0 )/d]
(3)

where ∆t is the time step associated with each iteration of the map. Following the order of the right

hand side terms of equation (2), the model assumes (i) crack front acceleration in the propagation

direction x due to the driving force f 0x̂ induced by the load G, until a limiting speed vmax =

f 0/b, is reached due to a velocity–dependent phonon drag force −bvi(t) with friction coefficient
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b; (ii) line tension along the crack front modelled by the springs of strength k; (iii) crack tip

reconstruction, occurring at a rate which smoothly rises for decreasing crack speeds, leading to

crack climbing by one atomic layer upon each reconstruction, and to slowing of the crack due

to reconstruction–induced lattice trapping. This is the key assumption of the model yielding the

further drag term quadratic in the velocity, connected with with equation (3) as discussed in detail

below; (iv) a driving force increase for crack front sections “held back” during the propagation,

to include stress enhancement effects at those segments of the crack which have slowed down

and trail behind the rest of the crack front. This leads to extra driving forces for these segments,

thus eventually levelling off the ridges. While this last effect is well known, its precise functional

form and scaling are not. However, the model is not very sensitive to the details of the stress

enhancement term, so that varying its functional form and prefactor η gives rise to only slightly

different ridge shapes.

The ξ variable in equation (3) is the local climb slope due to reconstruction, which is velocity

dependent. The exact functional form of ξ is again not particularly important, as long as it implies

no reconstruction at high velocities (where thus ξ ≈ 0) and a smooth transition to the maximum

observed climb slope s at low velocities. A simple exponential form with scale parameter d which

centres the transition on a chosen value v0 < vmax is used in equation (3), which thus just expresses

the fact that climbing results from low propagation speeds, consistent with our calculations and

experiments. A macroscopic propagation instability can arise if low propagation speeds can, in

turn, be caused by climbing, creating a positive feedback loop, if a perturbation initiates the process

by slowing a point of the crack front below a critical speed vc < vmax.
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Our simulations provide an atomic scale mechanism leading to such a situation, by revealing

that climbing is associated to tip reconstruction events, promoted by low propagation speeds and

in turn capable of momentarily trapping and thus locally further slowing down the crack front.

In our model we represent this deceleration by imparting a small impulse to the system, directed

opposite to the direction of motion, in association with each reconstruction event. If we assume

for simplicity that an average of n reconstruction events take place during the time interval ∆t

for a given bead, its momentum mv will drop by −n(mv)τ/∆t, where the parameter τ << ∆t

is representative of the time delay associated with each reconstruction. The number of events is

related to the propagation velocity by n = ξv∆t/l, where l is the bilayer distance in the (111)

direction, i.e. the amount of climb for each reconstruction event. Thus the momentum change is

−mξv2τ/l, which is the nonlinear drag term in equation (2) addressed in point (iii) above. We

note that if the frequency of reconstruction events were constant for a given temperature, as is the

case for simple activated processes, then ξ would scale as 1/v, and would just give rise to a simple

drag term, linear in the velocity. Thus in an indirect way, this model sheds light on the role of

the cooperative, dynamic nature of brittle fracture: at high speeds, the atoms near the crack tip are

steered towards clean cleavage.

Experimental studies of the low crack–speed regime were performed using a novel technique

for applying very small but steady and well controlled tensile loads. The Si specimen is loaded by

taking advantage of the thermal expansivity mismatch between the sample and the aluminum load-

ing frame (Fig. 2b). Micrographs of the resulting (111) fracture surface are shown in Fig. 2a,c.

Triangular ridges, all deviating in the same direction from the fracture surface, form at a range
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of low crack speeds below about 800 ms−1. At higher crack speeds, about 2000 ms−1, the sur-

face is mirror smooth and no ridges are present. The crystallographic direction of the deviation

(identical in over 40 independent samples) is the same as the reconstruction–induced steps in the

atomistic simulation, and the shape of the ridges is qualitatively in agreement with the mesoscopic

model (Figs. 2c,d). Similar features have recently been reported25 under more complicated loading

conditions at a speed of about 1000 ms−1 (see Supplementary Information).

We next considered the (110) crack plane. Experiments have shown that cracks propagating

along the [001] direction deflect out of the plane at very low velocity6, 20, while cracks propagating

in the [1̄10] direction stay on the (110) plane up to very high velocity (about 2900 ms−1) before also

faceting onto (111) planes6, 7. Recent studies28 have assigned critical velocities for this instability

for various propagation directions and have shown that in all cases the deflection is not immediate

but only occurs after some initial propagation on the (110) plane. We simulated the (110)[1̄10]

crack propagation and observed the onset of this deflection phenomenon. This crack propagates

by breaking a series of bonds labelled A in Fig. 3a. The system also contains type B bonds, which

are oriented at the same angle with respect to the tension axis as A–bonds. Resolving the elastic

stresses on the atomic scale reveals that B–bonds located immediately above and below the crack

plane are virtually as highly stressed as A–bonds. However, strong neighbour bonds connecting

under–coordinated atoms left exposed by the advancing crack make the A–bonds weaker than

B–bonds so that the former are expected to break selectively during quasi–static (110) cleavage,

consistent with the low–speed experimental observations.
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In the simulations we initially observe each newly exposed under–coordinated surface atom

snap back towards the subsurface region. This induces significant local atomic motion while the

excess energy diffuses into the bulk crystal, but no immediate rebonding occurs as long as the

speed of propagation is sufficiently low. However, bond breaking events become more frequent

with increasing crack speed and the local relaxations overlap in time. As more kinetic energy

is locally available the fast crack front “stumbles”. Local reconstructions involving the removal

of under–coordinated atoms begin to occur on the open surfaces. This removes the reason for

selective A–bond breaking and in our simulation we indeed observe B–bond breaking events which

deflect the crack front onto a (111) plane. Further simulations reveal that under these conditions

any slight disturbance away from pure tension (e.g. a small extra shear strain component as in

Fig. 3b) can systematically reverse the initial relative stability of A– and B–bonds. This results

in multiple coherent breaking of B–bonds, effectively exposing (111) surfaces, consistent with the

crack motion observed experimentally (Fig. 3c-e).

No near–degeneracy of crack tip bonds exists in the orthogonal [11̄0] direction, consistent

with the observation of instabilities only at much higher speeds6. The deflection mechanism is thus

only operative for the [001] crack propagation direction. In contrast to the (111) cleavage plane,

here the formation of new chemical bonds, eventually leading to crack deflection, is favoured by

a relatively high propagation speed rather than a low one. This is due to the different interplay

between the local atomic motion and the “lattice trapping energy” liberated by the cleavage during

the time interval between consecutive crack tip advancement events.
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For both cleavage planes in silicon, subtle atomistic details of the crack tip involving dynam-

ical reconstruction mechanisms govern the path of the crack. This is unlikely to be the case for

silicon only, due to the general multiscale character of the fracture processes. In the Supplemen-

tary Information we present data on preliminary simulations that indicate crack tip reconstruction

phenomena in diamond and silicon carbide, and on experiments on sapphire that show low speed

instabilities similar to those observed in silicon. Therefore we suggest that crack tip reconstructions

occur more generally in brittle solids and control the qualitative macroscopic fracture behavior.

Methods summary

Tensile loading of the silicon (111) system was performed using apparatus shown in Fig. 2b. The

load is applied by heating the whole setup by a few degrees C. The experimental setup for the

(110) system was identical to that in ref. 6. The LOTF hybrid simulations were carried out using a

quantum– mechanical model based on density functional theory, as implemented in the CASTEP29

and SIESTA30 packages and the Stillinger–Weber potential31. The quantum–mechanically treated

region was selected automatically during the simulation, based on geometric criteria in relation to

the instantaneous crack tip position.
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Methods

For the (111) system, cleaving of 525 µm thick silicon specimens of 42 × 26 mm2 lateral dimen-

sions, cut from a [110] 4” silicon wafer, was performed under tensile load using the apparatus

shown in Fig. 2b. The specimens were notched with a 150 µm thick diamond saw to a length of

1.5 mm, heated to 200◦C and quenched in water to generate a precrack of the required length. The
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specimens were then glued to the Al7075 T6 frame using a 150 µm thick film of Epon 815C epoxy

resin. The load is applied by heating the whole setup by a few degrees C on a laboratory heating

stage due to the difference in thermal expansion coefficients between the sample and the loading

frame. When the rate of heating was well below 10◦C/min, the instabilities were always present.

Using high rates of heating resulted in the propagation of fast cracks leaving behind mirror–smooth

surfaces.

In the computer simulations, the CASTEP29 package was used for the (111) system and the

SIESTA30 package for the (110) system. The classical potential was adjusted to match the linear

elastic properties of the quantum–mechanical models in each case. The simulations were carried

out in the plane strain configuration and free boundary conditions were used in the x direction.

The load, applied by a fixed displacement boundary condition in the y direction, was increased in

a number of steps starting from G = 2.5 Jm−2, allowing at least 1 ps equilibration time between

successive steps, until the crack started to propagate. A variety of strain rates were tested down

to 0.1 % ps−1, with no qualitative difference observed. The load needed to crack the system, was

6.0 Jm−2 at the lowest strain rate we could afford. Since even at this strain rate the load was found

to be still strongly strain rate dependent, this value is only an upper bound. The 300 K constant

temperature simulations for the system shown in Fig. 1 were made on a 1200 × 400 × 3.8 Å3

90868–atom model thin slab, periodic in the crack–front direction. For these low–temperature,

highly driven systems, thermal activation and entropy effects, which could induce a qualitatively

different behaviour in three–dimensional systems, are unlikely to play a significant role. A series of

quasi-static simulations show the same behaviour, although the system has to be overloaded much
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more in order to crack, as expected due to the high lattice trapping. In the plane wave DFT part

of the LOTF hybrid simulation, the Brillouin Zone was sampled with 4 k–points along the crack

front, exchange and correlation were described using the PBE functional, nuclei were described

by ultrasoft pseudopotentials, and the electronic wave functions were expanded in plane waves

with a 180 eV kinetic energy cutoff. The QM region was selected by an algorithm detailed in the

Supplementary Information. The buffer region of the LOTF scheme22 was set at about 8 Å (4th

neighbour distance). Furthermore, we made a test calculation on a 15.2 Å thick slab using a tight

binding32 quantum–mechanical engine to verify that the same phenomena apply in the true three–

dimensional case. The reconstruction occurred at all sites along the crack front in quick succession

before any other kind of rebonding took place. The simulation of the system shown in Fig. 3 was

made on a 687×655×7.6 Å3 174752–atom model slab, using the standard SZP basis set with soft

confinement for the local orbital DFT part of the calculation. The mesh cutoff was 50 Rydbergs

and norm-conserving pseudopotentials were used.
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Figure 1 The simulated (111)[11̄0] crack system. a, Thin strip geometry of the simu-

lation. b, Map of the σyy stress component near the crack tip (red denotes highly stressed,

black is unstressed). c, Ground state reconstruction geometry of the crack tip under load,

created by a rotation of the bond indicated by the arrow. Red atoms are described with

quantum mechanics, yellow atoms with an interatomic potential. The small white atoms

represent H atoms which we used to terminate the initial surface behind the crack in order

to prevent it from closing up at low loads and thereby ease the search for a load value that

stabilises the crack (with or without terminating H). The first few bonds that break after

the reconstruction are in 6–member rings adjacent to the 7–member ring of the recon-

struction. Inset: crack tip structure after reconstruction and subsequent bond breaking.

Further increasing the load finally breaks the crack tip bridging bond and advances the

open crack surface yielding a downward step in the crack plane (not shown).

Figure 2 Ridges formed by low–speed instabilities on the (111) crack plane. a,

Optical micrograph of the (111) crack system. The crack advances from left to right as

it accelerates up to a speed of about 800 ms−1, as determined from the faintly visible

Wallner lines33. The ridges initiate at a variety of crack speeds. b, The fracture apparatus,

showing the silicon specimen glued to the aluminum frame. c, AFM micrograph close–

up of a ridge. d, Evolution of the crack front with the ridge shape as predicted by a

mesoscopic model based on the atomistic reconstruction mechanism illustrated in Fig. 1.

The red lines represent snapshots of the propagating crack front yielding the interpolated

crack surface (in grey).
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Figure 3 The (110)[11̄0] crack system. a, Geometry of the crack tip propagating

straight at low speeds by sequential breaking of type A bonds (blue). Red atoms are

described with quantum mechanics, yellow atoms with an interatomic potential. At each

propagation step, the A–bond is weaker than the corresponding B–bond because of a

neighbouring undercoordinated atom (indicated by an arrow for the A1, B1 pair). b, At

higher speed an instability occurs. At this point any slight shear disturbance in the stress

field reverses the relative stability of A– and B–bonds, and the crack is deflected onto

a (111) plane. The energy release rate for this system is G = 6.7 Jm−2. In addition to

the main tensile load, this includes a small G = 0.24 Jm−2 shear contribution, in order

to break the symmetry in the y direction. Both exposed (111) crack surfaces undergo a

2 × 1 reconstruction. The bottom three panels are photographs from three–point bend-

ing experiments6. c, (110) fracture surface for low–speed cleavage (gray). d, Fracture

surface of a specimen with the crack deflected from the (110) plane (white) to the (111)

plane (black) for intermediate–speed cleavage. e, (111) fracture surface obtained for high–

speed cleavage.
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